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Abstract. We are dealing with a numerical method for solving the problem of minimizing a difference 
of two convex functions (a d.c. function) over a closed convex set in R”. This algorithm combines a 
new prismatic branch and bound technique with polyhedral outer approximation in such a way that 
only linear programming problems have to be solved. 
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1. Introduction 

In this paper we consider the multiextremal global optimization problem 

glob mint f(x) - g(4) 
s.t. hi(x)<0 (j=l,. . . ,J) 07 

where f, g, hj (j=l,. . . , J) are finite convex functions on IR”. Problem (P) is 
frequently called a d.c. optimization problem, where d.c. is an abbreviation for 
the difference of two convex functions. The formulation of (P) indicates that we 
are interested in finding a global minimum of the objective function (f(x) - g(x)) 
over the feasible set 

‘D:={XER”:hj(x)sO (j=l,..,J)}. 

We assume that D is compact (which implies of course that a global solution of 
(P) exists whenever D is nonempty), and that a feasible point is known in 
advance. Problem (P) is of interest from a practical as well as from a theoretical 
viewpoint. From the theoretical viewpoint we should like to mention that the class 
of d.c. functions, i.e., functions that can be represented as difference of two 
convex functions, enjoys a remarkable stability with respect to operations fre- 
quently encountered in optimization. For example, the class of d.c. functions is 
closed under operations such as sum, multiplication, multiplication with a scalar, 
forming maximum and minimum of a finite number of functions, etc. Moreover, 
we known that every locally d.c. function, i.e., every function that is d.c. in a 
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neighbourhood of a point, is also d.c. in the whole space. From this it can easily 
be deduced, for example, that every C2-function is d.c., and also that continuous 
piecewise linear functions are d.c. Since, clearly, polynomials are C2-functions, 
we see from the well-known approximation theorem of WeierstraB that, in 
principle, every global optimization problem of minimizing a continuous function 
over a compact convex set can be approximated (with respect to the sup-norm) as 
closely as desired by a sequence of d.c. problems. Surveys of d.c. functions are 
included, e.g., in Hiriart-Urruty (1985), Horst and Tuy (1990). 

Of course, the main concern when using these properties is how to construct a 
d.c. representation of a function which is known to be a d.c. function but not 
given in d.c. form. Although this problem of finding appropriate d.c. representa- 
tions is not yet solved for broad classes of d.c. functions, it should be noted that in 
many applications a d.c. representation of the functions involved is either given or 
can easily be found. For example, in many econometric applications we encounter 
a situation where the objective function is of the form f( y) - g(z), f and g convex, 
which reflects, for example, the fact that in some activities the unit cost increases 
when the scale of activity (y) is enlarged (diseconomies of scale), whereas in 
other activities the unit cost decreases when the scale of activity (z) is enlarged 
(economies of scale). In other applications, the objective function is supposed to 
be differentiable and separable, i.e. the sum of function of one real variable; and 
each of these univariate functions is S-shaped, i.e., it is concave (or convex) in the 
interval [a, 21 and convex (or concave) in the interval [X; b], where [a, b] is the 
interval of interest for the given function and x” E (a, b). It has been shown in Tuy 
(1987a) that such a univariate S-shaped function can easily be represented in d.c. 
form (cf. also Horst (1990), Horst and Tuy (1990)). Another example is the 
optimization of indefinite quadratic forms xTAx (A E [w”““, symmetric) for which 
it is well known that there are several ways of finding positive semidefinite 
matrices F, G such that xTAx = xTFx - xTGx (cf., e.g., Pardalos et al. (1987), 
Pardalos and Rosen (1987)). 

D.C. programming problems arise frequently also in engineering and physics 
(e.g., Giannessi et al. (1979), Heron and Sermange (1982), Horst and Tuy (1990), 
Nguyen and Strodiot (1988), Polak and Vincentelli (1979), Toland (1979), Tuy 
(1986)) (1987a), Vidigal and Director (1982)). Particularly in engineering design 
we encounter optimization problems with lower C2-objective functions which 
have been shown to be d.c. (e.g., Hiriart-Urruty (1985), Horst and Tuy (1990), 
Polak (198?), Thach (1988)). Another example of mainly theoretical interest that, 
however, shows how large the class of d.c. problems is, is provided by the fact 
that the square d&(x) of the distance to any closed set MC [w” is d.c. (see 
Hiriart-Urruty (1985) and references therein). For a survey of d.c. problems, see 
Horst and Tuy (1990). 

Recent advances in deterministic global optimization (see Horst (1990), Horst 
and Tuy (1990)) h ave led to several algorithms for solving problem (P). Note first 
that, by introducing an additional variable t, problem (P) can be transformed into 
the equivalent concave minimization problem 
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glob min(t - g(x)) 
s.t. f(x) s t 

hj(X)SO (j=l,...,J). 
WP) 

Let 

5 := {(x, t) E R” x R: f(x) s t, x E D} 

denote the feasible set of (CP). 
Likewise, problem (P) can be converted into an equivalent convex minimiza- 

tion problem subject to an additional reverse convex constraint. This problem is 
of the form 

glob min( f(x) - t) 

s.t. g(x) 2 t WC) 
h,(x)sO (i=l,. . . ,J). 

A third transformation of (P) which involves two additional variables yields the so 
called “canonical d.c. program” 

glob min c’z 

s.t. i,(z) s 0 , (CJJC) 
h”,(z) 2 0 , 

where c E IWn+2; h”,, K2 : IWn+2 + R convex (cf. Horst and Tuy (1990), Tuy (1986)). 
The known algorithms for solving (CP), (RC) and (CDC), respectively are 
mainly either branch and bound methods or outer approximation procedures 
(cutting plane algorithms). Very recently also combinations of branch and bound 
with outer approximation have been proposed to solve the concave minimization 
problem (CP) and the canonical d.c. program (CDC). 

Branch and bound methods to solve (CP) are proposed in Horst (1976, 1980, 
1986), Tuy et al. (1985). Generalizations of some of these approaches to reverse 
convex problems and canonical d.c. programs are given in Horst (1988). A 
general theory of branch and bound methods in global optimization can be found 
in Horst (1986,1988,1989), Horst and Tuy (1987)) Tuy and Horst (1988)) cf. also 
Horst and Tuy (1990) Outer approximation methods for (CP) are developed in 
Hoffman (1981), Horst, Thoai and Tuy (1987,1989), Thieu et al. (1983), Tuy 
(1983), cf. also Horst and Tuy (1990). Problems (RC) and (CDC) are treated by 
outer approximation techniques in Horst and Tuy (1990), Thoai (1988), Tuy 
(1986), Tuy (1987), Tuy (1987a), Tuy and Thuong (1988). A general theory of 
outer approximation in global optimization is presented in Horst, Thoai and Tuy 
(1987,1989). A detailed discussion of both types of approaches that includes 
many additional material on specially structured subclasses and on applications 
can be found in the monograph Horst and Tuy (1990). 

All of these pure branch and bound or pure outer approximation algorithms are 
numerically expensive. Outer approximation methods require, in each iteration, 
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the determination of all new vertices of a polytope P generated from a polytope P 
by an intersection of P with a closed halfspace (a cut). Although the originally 
proposed methods of Hoffman (1981), Thieu et al. (1983) for finding all of these 
new vertices have been improved recently by Horst et al. (1987), this part of the 
outer approximation methods remains computationally very costly (cf. Horst and 
Tuy (1989), (1990)). 

Branch and bound methods use conical or simplicial partitions unless additional 
structure can be exploited such as, for example, separability of the objective 
function which suggests to consider rectangular partitions (e.g., Horst and Tuy 
(1990)) Pardalos et al. (1987), Pardalos and Rosen (1987)). The computationally 
most expensive part in these methods usually consists in the calculation of lower 
bounds. For example, the computation of the lower bounds in the conical branch 
and bound algorithm of Tuy et al. (1985) and is variants of Horst (1986) (see also 
Horst and Thoai (1989)) re q uires in each step the calculation of the vertices of a 
polytope which is the intersection of a polyhedral cone with k. (n + 1) cutting 
halfspaces, where n is the dimension of the feasible set and k E N is a number to 
be specified in the algorithm. The simplicial procedure for solving (CP) proposed 
in Horst (1976,198l) mainly requires in each step the solution of two nonlinear 
convex minimization problems. Extensions of this approach to d.c. programming 
problems face the additional problem of detecting infeasible partition sets, and, 
whenever the chosen bounding operation is computationally cheap in these 
extensions, then - as a rule - the bounds are not very efficient (e.g., Horst and 
Tuy (1990) and references therein). 

A first successful attempt to overcome the difficulties mentioned above is the 
cone splitting/outer approximation algorithm of Horst, Thoai and Benson (1991) 
for solving the concave minimization problem (for a simplicial variant, see 
Benson and Horst (1991); for a specialization to the case when the objective is 
separable, see Benson (1991)). This algorithm that, in the sequel, will be called 
H-T-B algorithm combines branch and bound elements with an outer approxi- 
mation procedure in such a way that only linear programs and one-dimensional 
convex minimization problems (line searches) have to be solved in each iteration. 
First numerical experiments indicate that this approach is considerably more 
efficient than previous ones (cf. Horst, Thoai and Benson (1991)). A generaliza- 
tion of this concave minimization approach to the canonical d.c. program is 
proposed in Horst, Phong and Thaoi (1991). The H-T-B algorithm, however, 
does not seem to be appropriate for solving problem (CP). This algorithm 
requires knowledge of an interior point y” (hence full dimensionality) and 
boundedness of the feasible set, and it operates with partitions consisting of cones 
emanating from y”. The feasible set of (CP), however, which is the epigraph of 
the convex function f(x) over D, is not bounded. Even if one would find it 
worthwhile to compactify this set, for example, at the expense of carrying out a 
first iteration of a branch and bound procedure for solving max f(D) which yields 
an upper bound off on D, the specific shape of the resulting truncated epigraph 
would not suggest using the conical partitions of the H-T-B approach. 
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Likewise, a transformation of (P) into the form (CDC) and application of the 
procedure in Horst, Phong and Thoai (1991) does not seem to be appropriate. 
One reason is the increase in the number of variables by two; a second one is that 
the approach of Horst, Phong and Thoai (1991) seems to be not much better than 
pure branch and bound procedures because the efficient concave minimization 
bounding operation used in Horst, Thaoi and Benson (1991) cannot be carried 
over to problem (CDC). Finally, it should be noted that all conical branch and 
bound/outer approximation algorithms suffer from the drawback that the LP- 
subproblems become more and more ill-conditioned as the cones shrink to a ray. 
Therefore, implementations of these procedures delete “thin” cones which 
amounts to sacrificing accuracy. 

It is the purpose of the present paper to propose a new branch and bound/ 
outer approximation algorithm for solving the d.c. problem (P). This approach, 
though designed in a similar spirit as the H-T-B algorithm, has several advan- 
tages over an application of the latter to (CP) resp. of the algorithm of Horst, 
Phong and Thoai (1991) to (CDC). For example, in contrast to the H-T-B 
approach which requires full dimensionality of D, no requirement on the dimen- 
sion of D is needed. Moreover, it will not be necessary to compactify the feasible 
set of (CP). 

The main advantages, however, regard numerical efficiency: only linear sub- 
programs and no univariate convex minimization problems have to be solved. 
Furthermore, a mechanism for the deletion of infeasible pattern sets is applied 
that is more efficient then the deletion-by-infeasibility rules proposed previously 
(cf. Horst (1988,1989), Horst and Tuy (1990)). Finally, the algorithm uses 
prismatic partitions which fit much better to the shape of the feasible set 6 of 
(CP) than conical partitions. 

The paper is organized as follows. An outline of the method is presented in the 
next section. Section 3 deals with basic operations of the algorithm, and Section 4 
contains its detailed description and proves convergence properties. Some illustra- 
tive numerical examples are given in the final section. 

2. Outline of the Method 

We consider problem (CP), and we set 

h(x) = max{hj(x): j = 1, . . . , J} 

which is clearly convex in 52”. 
A brief outline of the algorithm is as follows. 
Given an n-simplex S which contains the feasible set D C R” of (P), a prism 

T = T(S) C Rntl is defined by 

T={(~,~)ER”~R:~ES} (1) 
The prism T has it + 1 edges that are vertical lines (i.e., lines parallel to the t-axis) 
which pass through the n + 1 vertices of S, respectively). Several ways to 
construct a simplex S > D are described in the next section. 
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For the bounding operation on S (resp. T), we consider a polyhedral convex set 

P={(x,t)ElR”xR:xES,t~i), (2) 

where t”is a real number satisfying 

t”< min{ f(x) : x E D} 

(determining t”amounts to solving a convex minimization problem which can be 
done by any standard nonlinear programming technique). 

From the above we see that T > P 3 D, where D = {(x, t) E R” X IR : x E D, 
f(x) - t 6 0} is the feasible set of problem (CP). A lower bound p of the function 
t - g(x) over 6 is determined by solving a certain linear program which will be 
introduced below. Let (6, F) be a point in P satisfying. 

v E s, t- g(U) =z t - g(x) V(x, t) E c . 

If (6, 0 is in 5, then (6, f) is of course an optimal solution of (CP). Otherwise, 
we cut off a part of the set Afi and (or) construct a (more and more refined) 
partition of T. 

Suppose that a simplicial partition of S is at hand, i.e., we have 

(3) 

where p 2 2; the sets Si are n-simplices (i = 1, . . . , p), and each pair of simplices 
Sj, Si (i #i) intersects at most in common boundary points (cf. Section 3 for 
various ways to construct such a partition). Then 

T= ii1 Ti 7 (4) 

where 

Ti={(x,t)~R”xR:xESj} (5) 

is a natural prismatic partition of T induced by the simplicial partition (3). For 
each prism Ti of the partition (4), a lower bound p( Tj) for t - g(x) over Tj n P is 
calculated, and 

p1 = min{ p(T,): i = 1, . . . , p} 

is a lower bound of the objective function in (CP). 
If throughout the further subdivision of prisms and the bounding operation 

some feasible points in fi are found, then let (xk, tk) be the best feasible point 
obtained so far, i.e., the feasible point with smallest objective function value, and 
let (Ye = t, - g(x”). If (Ye - Pk = 0, then (xk, tk) is an optimal solution of (CP). 
Otherwise, we delete prisms that do not contain any feasible solution which is 
better than (xk, tk), and we choose one of the remaining prisms associated with 
the smallest lower bound Pk for further subdivision and go to the next iteration of 
the branch and bound procedure. 

Clearly, the previous procedure involves four basic operations: 
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(a) the subdivision process: in each iteration some prism is divided into a finite 
number of subprisms; 

(b) the bound estimation: for each prism generated throughout the algorithm, 
a lower bound for the objective function t - g(x) over the part of the feasible set 
contained in this prism is computed; 

(c) the construction of cutting planes: throughout the algorithm a sequence of 
polyhedral convex sets PO, P,, . . . is constructed such that PC, 3 Pi 3. - - > i. 
Each set Pi is generated by using a cutting plane to cut off a part of P,-,; 

(d) the deletion rule: at each iteration we have to delete certain prisms that do 
not contain any feasible solution which is better than the one obtained so far. 

In the next section we shall describe the basic operations in detail. 

3. Basic Operations 

3.1. CONSTRUCTION OF A FIRST PRISM 

Throughout this paper by a prism T we always mean a polyhedral prism generated 
by an n-simplex S C R”, i.e., 

T=T(S)={(x,t)ER”xR:xES}. (6) 

For the initial simplex S 3 D (which yields the initial prism T > 6), we consider 
two often occurring cases. 

CASE 1. Lower bounds cj of the variables xj are given, i.e., 

cjixj(j=l,...,n), 

wheresjiE (j=l,...,n), 
A simplex S 3 D can then be defined by 

S= xERn:gjGxj, j=l,. . . ,n, 
i ixjsV}Y 

j=l 

(7) 

(8) 

where 

y=max ix,:*ED 
l 

. 
j=l 

The n + 1 vertices U, , u2, . . . , u,+~ of S are 

U’=~,,g2,-.&J 
u’=(e,,. . . ,gjj-l, Y-~e;,~j+l,-..,_e,)(i=2,...,n+1). 

i#j 

If the bounds gj, are not explicitely given, then they can be determined by solving 
n convex minimization problems (with linear objective function) of the form 
~j=min{xj:xED}. 

A similar construction can be applied when upper bounds Fj 2 xi are known. 
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CASE 2. The set D is a polytope, i.e., 

D={x~R":d~x+S~~0 (i=l,...,m)}, (9) 

where d,EW, S,CrW (i=l,. . . ,m). 
Let y be a vertex of D and let Z(y) = {iE (1,. . . , m}; d,?y + ai =O}. If the 

vertex y is nondegenerate, then the set Z’(y) : = Z(y) consists of exactly n indices. 
In the degenerate case ( ] Z( y)) > n , one can always find a subset Z’(y) C Z(y) such ) 
that the vectors d; (i E Z”(y)) are linearly independent. Then the initial simplex S 
is defined by 

s = {x E 53” : d,TX + isi =T O(i E ZO( y)), a’x + y s O} ) (10) 

where 

a=- x d,,y=-max{aTx:xED} 
iE/“( v) 

(for details, see Horst and Tuy (1990); for a related approach see Falk and 
Hoffman (1976)). 

The n + 1 vertices of S are y and the IZ points where the hyperplane {x E R” : 
a’x + y = 0) intersects the edges of the cone {x E R” : d,rx + 8, < 0 (i E Z’(y))}. 

3.2. SUBDIVISION OF PRISMS 

Let T(U) be a prism generated by a simplex U = [u’, . . . , un+‘] : = conv{ ul, . . . , 
u”+ ’ } which is defined as convex hull of its vertices u’, . . . , un+ ‘. Then every 
r E U can be represented as 

,I + 1 n+ I 
r = C Api, C Ai = 1, hi 2 0 (i = 1, . . . , IE + 1). 

i=l i=l 

Suppose that r # u’ (i = 1, . . . , n + 1). For each i satisfying hi > 0 let Ui be the 
subsimplex of U defined by 

Ui = [u,, . . . , u’-‘, r, ui+‘, . . . , u”+l] . 

Then the collection {U, : A, > 0} defines a partition of U, i.e., we have 

(11) 

U Uj=U,intUiflintUj=Ofori#j 
h,XJ (12) 

(cf. Horst and Tuy (1990) and references therein). In a natural way the prisms 
T(Ui) generated by the simplices Ui defined in (11) form a partition of T(U) 
(which is defined in a similar way to (12)). In order to ensure convergence of the 
algorithm developed below we introduce the concept of an exhaustive subdivision 
process of prisms which is derived from that of simplices in a straightforward way. 

DEFINITION 1. A subdivision process of prisms is called exhaustive if for every 
nested (decreasing) sequence of prisms {T,} generated by the subdivision process 
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we have 

?I Tq=y 
q=o 

where r is a line perpendicular to R” (a vertical line). 

Obviously, every exhaustive subdivision of simplices as defined in Horst 
(1986,1988), Horst and Tuy (1987,199O) induces an exhaustive subdivision of the 
corresponding prism. 

A classical exhaustive subdivision process of simplices is bisection (cf., e.g., 
Horst (1976), Horst and Tuy (1990)), in which each simplex [u’, ul, . . . , u”] is 
divided into two subsimplices by choosing in (11) 

1 7 = - (vi1 + &), 
2 

where 

IIui1-ui211 =max{l]u’-vj]l:i, jE{O,. . . ,II}, i#j} 

(here 1) . 1) denotes the Euclidean norm). 
Other exhaustive subdivision procedures of simplices have been investigated in 

Horst and Tuy (1990), Tuy (1991). 

3.3. LOWER BOUNDS 

Let U be an n-simplex which is derived from the initial simplex S by a subdivision 
process as discussed in the preceeding section, and let T = T(U) be the prism 
generated by U. M_oreover, let (Y denote an upper bound of inf{t - g(x): 
(x, t) E D}, where D = {(x, t) E R” x R: x E D, f(x) < t} is the feasible set of 
problem (CP). In the algorithm below, (Y will be the smallest value of f - g(x) 
attained at a feasible point known so far; we assume that an initial feasible point 
is at hand so that we always have (Y < 03. 

Furthermore, let P be a polyhedral convex set which contains 6,. Suppose that 
P is described by 

P={(x,t)ER” xlR:Ax+at~b}, (13) 

where A is a real (m x n)-matrix and a, b E IF!“. 
We proceed to compute a lower bound /3(T, P, a) of t - g(x) over T flfi in the 

following way. 
Let ui (i = 1, . . . , n + 1) denote the vertices of U and define 

z(U)={iE{l,...,n+l):u’ED) 
and 

~= min{a,min{f(u’)-g(u’):iEZ(U)}, ifZ(U)#O 

a, if Z(U) = 0 (14) 
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For each i = 1, . _ _ , IZ + 1 consider the point (u’, ti) where the edge of T which 
passes through ui intersects the level set {(x, t) : t - g(x) = CL}, i.e. 

t;=g(u’)+p (i=l,...,n+l). 

Let 

H={(x,t)ER”xtR:pTX-t=y} (15) 

denote the uniquely defined hyperplane through the points (u’, ti), where p E R” 
and y E R. Consider the two closed halfspaces 

H+={(x,t)EIW”xlW:p=X-t~y} (16) 

and 

H_={(x,t)EIW”xlW:pTX-t~y} (17) 

generated by N. (We say H, (resp. H-) is the upper (resp. lower) halfspace of 
H.) If TnlkH+, then we see from the concavity of t - g(x) that 

min{t-g(x):(x,t)ETn6}>min{t--g(x):(x,t)ETnH+}= 

min{t - g(x): (x, t) E {(ul, tl), . . . , (un+l, t,+l)}} = /-k . 

If T rl fi 9 H, , then we shift the hyperplane H (downward with respect to t) until 
it supports the set T fl P n H- at a point z = z(T) (z is a point in T n P n H- 
with the greatest distance to H). Let fi denote the resulting supporting hy- 
perplane, i.e., the hyperplane parallel to H satisfying z E H, and let fi+ denote 
the closed upper halfspace generated by J?. Furthermore, for each i = 1, . . . , n + 
1 let zi = (u’, <) be the point where the edge of T which passes through ui 
intersects Z?. Then it follows from our construction that 

TnikTnPcTnH,; 

and hence 

min{ t - g(x) : (x, t) E T rl fi} 2 min{ t - g(x) : (x, t) E T n fi,) 

= min{t, - g(u’): i = 1, . . . , n + 1) . 

Let V denote the matrix with columns ul, _ _ _ , $+I. Then the above consideration 
leads to the following linear program in (A, t): 

max (%l tihi - t) 
i=l 

(18) 

(LP) s-t. AVA + at s b 

n+l 

(19) 

F1 A,=l,Aj>O i=l,...,n+l (20) 

where A is a vector with components A,, . . . , A,+l, and A, a, b are given in (13). 
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LEMMA 1. (a) Zf the system (19), (20) has no solution, then the intersection 
T fl 6 is empty. 

(b) Otherwise, let (A*, t*) be an optimal solution of (LX’) and c* = CyJ: t,A,* - 
t* its optimal value, respectively. Then the following assertion holds: 

(bl) Zf c* ~0, then TflfiCH+; 
(b2) if c* >O, then 

z = z(T) = (VA*, t*), zi = (ui, <) = (u’, ti - c*)(i = 1, . . . , n + 1) (21) 

and 

<-g(u’)=p-c* (i=l,...,n+l). (22) 

Proof. Note that (x, t) E P implies t > t for all convex polyhedral sets P 
generated by the method (cf. (2)). It follows that (LP) has an optimal solution 
whenever its feasible set is nonempty. 

Recall that the equation of H is p’x - t = y. It follows that determining the 
hyperplane ti and the point z as discussed above amounts to solving the linear 
programming problem 

max (p’x- t) (23) 

s.t. (x, t) E T II P (24) 

Since every point x E U (where U is the simplex which generates T) is uniquely 

representable as 
n+l n+l 

x= 2 hiui=VA, x A,=l,Ai~O (i=l,..., n+l), (25) i=l i=l 

we see from (13) that the set T n P coincides with the feasible set of problem 
(LP) (in other words, the systems (19), (20) describes T fl P). Therefore, if the 
system (19), (20) has no solution, then T fl P = 0, and hence T n b = 0 (because 
of 1? c P). 

To prove part (b), we first note from (23) and (25) that 

p’x-t=pT(xAiu’)-t=xAipTui-t. 

But, since (v’, ti) E H, we have pTui - ti = y (i = 1, . . . , n + l), and hence 

n+l n+l 

pTx-t= 2 Ai(y+ti)-t= c t,A,-t+y, 
i=l i=l 

(26) 

where the last equality follows from Cy_‘,’ Ai = 1. Therefore, the linear programs 
(23), (24) and (LP) are equivalent, and, if y* denotes the optimal objective 
function value in (23), (24), then 

y* = c* + y . 
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If y*s y, then it follows from the definition of H, that H is obtained by a parallel 
shift of H in the direction H,. Therefore, c* G 0 implies T fl P C H,, and hence 
T rl fi C H, which proves (bl). 

The equivalence of the two linear programs which we have shown above 
implies that the point z = (x*, t*) with x* = VA* is an optimal solution of (23), 

(24). 
Since fi = {(x, t) E R” x R: p’x - t = y*} and H = {(x, t) E R” x R: p’x - t = 

y} we see that for each intersection point (u’, <) (resp. (u’, t;)) of the edge of T 
passing through ui with I? (resp. H), we have pTui - 6 = y * and pTvi - ti = y, 
respectively. This implies that < = ti + y - y* = ti - c*, and (using ti = g(u’) + CL) 
that & = g(u’) + p - c*. 0 

Now recall that we have seen above that in the cas_e (b,) of Lemma 1 the quantity 
p constitutes a lower bound of (t - g(x)) on T fl D whereas in the case (b2) such 
a lower bound is given by min{< - g(u’) : i = 1, . . . , n + l}. Lemma 1 thus 
provides the lower bound 

if (LP) has no feasible point 

ifc*GO 

if c*>O 
(27) 

of t - g(x) on T n fi which is calculated by solving the linear programming 
problem (LP). We will see in Section 3.5 that T can be deleted from further 
consideration when p( T, P, a) = CC or /3( T, P, a) = p. 

3.4. OUTER APPROXIMATION OF fi 

The polyhedral convex set P > fi used in the preceding section is updated in each 
iteration, i.e., a sequence of polyhedral convex sets P,,, P,, . . . is constructed 
which satisfy 

P, 3 P, 3 * * * I? . 

The transition from Pk to Pk+l (k = 0, 1, . . .) is d one in a way which is standard 
for pure outer approximation methods: An appropriate linear inequality 
l,(x, t) < 0 is added to the constraint set which defines Pk, i.e., we set 

P k+l = Pk n {(x, t) E [w” x [w: l,(x, t) so> . 

We construct the function l,(x, t) in the following way. At iteration k, we will 
have a lower bound & of t - g(x) over 6 which equals some p( T, P,, a) < m as 
defined in (27) with P = Pk. It follows from the discussion of the preceding 
section that we will also have a point (V”, Fk), satisfying ik - g(u”) = Pk. If 
(I?“, F,) E fi,, i.e., if fik E D andf(rJk) < t”, then we are done: (tYJk, tk) is an optimal 
solution of problem (CP). 
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Therefore, we consider the case (G”, fk) $ 6. Let .zk = (x*~, tek) E T n Pk 
denote the optimal solution of the linear program (23), (24) corresponding to 
P = Pk and to a prism T such that Pk = p( T, Pk, LY). Recall that x*~ = Vkh*k, 
where (A* k, t* k) is an optimal solution of the linear program (18)) (19)) (20) with 
V= Vk and the constraints describing T n Pk. 

Suppose that we have zk @ fi, and let h”((x, t) := max{h(x), f(x) - t}. Clearly, h” 
is convex (since h(x) and f(x) - t are convex) and 

~={(X,t)ERnXIR:i(x,t)~O}. (28) 

We set 

Zk(X, t) = s& t) - z”] + ii ) 

where sk is a subgradient of h” at .zk, 

(29) 

LEMMA 2. The hyperplane {(x, t) E R” X R: l,(x, t) = 0} strictly separates zk 
from D, i.e. 

Zk(Zk)>O (30) 

and 

Zk(X, t) s 0 V(x, t) E 5 . (31) 

Proof. Since we assume that zk z 6, we have Ik(zk) = h”(zk) > 0. Relation (31) 
is an immediate consequence of the definition of a subgradient. 0 

Note that the cut (29) is standard in outer approximation methods. A great 
variety of other cuts can also be applied (cf. Horst, Thoai and Tuy (1987, 1989), 
Horst and Tuy (1990)) 

3.5. DELETION RULES 

At each iteration of the algorithm we try to delete certain subprisms that do not 
contain an optimal solution. Apart from the standard branch and bound deletion 
rule which deletes a prism T whenever the lower bound associated with T exceeds 
the current best upper bound, we propose the following two deletion rules which 
are immediate consequences of Lemma 1. 

(DRl) Delete T if (LP) has no feasible solution . 

It follows from Lemma l(a) that in this case T tl6 = 0, i.e. the prism T is 
infeasible (cf. Horst (1988)). 

(DR2) Delete T if the optimal value c* of (LP) satisfies c* < 0. 

In this case we see from Lemma 1 and from the definition of p that the current 
best feasible solution cannot be improved in T. 
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4. The Algorithm 

Next we describe the algorithm for solving (P) in its transformation (CP). The 
notations and basic operations we use are those introduced in the preceding 
sections. 

Initialization 

Construct a simple: S,, > D, the corresponding prism To = T(S,) and a ployhedral 
convex set PO > D as described in Section 3. Subdivide T, according to an 
exhaustive subdivision process (cf. Section 3.2). Let 9” denote the corresponding 
initial partition of S,, and let 

&={T= T(S);SE&} (33) 
denote the initial prismatic partition of T,. 

Let GO be the best objective function value at the feasible points known in 
advance (cf. the assumption in Section 3.3), and let V(9,,) denote the union of the 
vertices of all S E 90. Set 

cu, = min{ GO, f(u’) - g(v’) : ui E V(9,) n D} , (34) 

and let (x0, to) E fi satisfy to - g(x”) = (Ye. 
For each T E & 6 solve the linear program (LP) corresponding to czo and T 

(resp. to S when T = T(S)). 
Delete all T E J46 which satisfy (DRl) or (DR2). 
Let JH, denote the collection of remaining prisms in .&,, and for each T E A, 

set 

P(T) = P(T, f’o, ao> (35) 

(cf. (27)). 
Let 

/3,=min{p(T):TE~,}, (36) 

and let (Go, To) be the point satisfying PO = To - g(V’) (cf. Lemma 1). If (V”, Fo) E 
fi, then stop: (Go, fo) is an optimal solution of problem (CP). 

Iteration k (k = 0, 1,2, . . .) 

At the beginning of Step k we have a polytope Pk > 5, the best feasible point 
(xk, tk) obtained so far, and an associated upper bound (Ye = t, - g(x”). Further- 
more, we have a set Ju, of prisms generated from the initial partition by deletion 
operation and subdivisions according to the rules stated below. Finally, for each 
prism T E Ju,, a lower bound /3(T) < inf{t - g(x) : (n, t) E fi rl T} is known, and 
we have the bound pk < int{ t - g(x) : (x, t) E fi} and a (not necessarily feasible) 
point (V”, t,) associated with &, such that & = ik - g(V”). 
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k.1. Delete all T E Al, satisfying 

P(T)2 a,‘. (37) 

Let $!Z2, be the collection of remaining prisms in A,. If .G& = 0, then stop: xk is an 
optimal solution of problem (P) with optimal value & = Q. 

k.2. Select a prism T: E %k satisfying 

Pk = P(Tk*), (fi”, ik> E T: , 

and let .zk be an optimal solution of (23), (24) corresponding to Pk and T,*. 
If zk E 6, then set Pk+l = Pk. 
If .zk @ 6, then construct Zk(x, t) according to (29), and set 

P k+l = {(x, t) E Pk : I,@, t) c O} . (38) 

k.3. Subdivide Ti = T(S,*) according to the chosen exhaustive subdivision 
process into a finite number of subprisms Tk,j( j f Jk). 

Let uf denote the new vertex in the corresponding partition of the simplex Si 
which generates T: and set 

ffk 
min{a,, f(u:) - g(uk*)} (39) 

k.4. For each j E Jk solve the linear program (LP) corresponding to Tk,j, Pk+l 
and czz+i. 

Delete all Tk,j( j E Jk) which satisfy (DRl) or (DR2). Let &L denote the 
collection of remaining prisms Tk,j( j E Jk), and for each T E .A: set 

P(T) = max{P(T,*), P(T, Pk+ly a’,+,>> (40) 

(cf. (27)). 
k.5. Let Fk denote the set of new feasible points detected while evaluating (39) 

and solving the linear programs in Step k.4, and set 

(Y~+~ =min{a,, min{t - g(x):(x, t)E Fk}} (41) 

Let (xk+‘, tkil) E fi satisfy tk+l - g(x”+‘) = (Yk+l. 
Set 

(42) 

and set 

P k+l = min{ P(T): T E Al,,,} . (43) 

Let (Uk+‘, t,+, ) be the point satisfying @k+I = ?k+l - g(Gk”) (cf. Lemma 1). If 
(6 ki-l, Tk+,) E 6, then stop: (Uk+‘, ?k+l) is an optimal solution of problem (CP). 
Otherwise, go to the next iteration. 
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REMARK. In practice, one would stop of course when (Ye - & G E (.a > 0, 
prescribed). 

THEOREM 1. Zf the algorithm is infinite, then every accumulation point of the 
sequence {(U”, t;,)} is an optimal solution of problem (CP). 

Proof. Recall that at each iteration k-the point (V”, fk) E Tl satisfies & = 
tk - g(U”) with p k < inf{ t - g(x) : (x, t) E D}. Let (x”, t”> be an accumulation point 
of the sequence {(V”, Fk)}, and let {(&, Fkq)} be a subsequence satisfying 
lim,,, (Ukq, fkq) = (x”, F). For the sake of simplicity of notation, we shall denote 
this tubsequence by {(V”, t,)}. Since Pk = ?k - g(V”) is a lower bound of t - g(x) 
on D, it follows from the continuity of t - g(x) that t”-- g(x”) is the optimal 
objective function value of (CP), and (5, t”> is an optimal solution of (CP) 
whenever (x”, t”> is feasible. Therefore, it suffices to prove that (x”, F) E 5. 

A standard argument on the finiteness of the number of partition elements in 
each iteration which was used, e.g., in Horst (1976, 1986, 1988), Horst and Tuy 
(1989,199O) h s ow that there is a subsequence {(Vqu, fq,)} of {(V”, fq)} such that 
the sequence { Tg} associated with {(uqy, fq,)} (i.e., (VqU, fq,) E TzV and pq, = 
p( Q-= fq, - g(uqv)) is monotonically decreasing (nested). Since the subdivision 
process is exhaustive, and since the prisms TtV are closed, we see that Tg 
converges to a ray 7, and (x”, t”> E r. 

It is easy to see that r rl ( ny P,,) f 0, since Tqy II P,, # 0 Vv (otherwise TtV 
would have been deleted, cf. Lemma l(a)). 

Next, we consider the sequence {z”} of optimal solutions of the linear 
programs (23), (24) corresponding to Tt and Pk. By the same arguments which 
we used above for the sequence {(U”, i t )}, we see that to every accumulation 
point (X; r) of {(V”, tk)} corresponds an accumulation point z” of {z”} so that (x”, 
r) and 2” lie on the same ray (and vice versa). Moreover, since for each-q, of the 
above subsequence, we have zqv E T;“, (VqU, Fq,) E T4*, and z’~~ E Hqv, (Uqv, 
<,) E Hq, where Rqu is a hyperplane which intersects all edges of T4*,, we must 
have z” = (5, t”>. 

Finally, it follows from the general theory of outer approximation methods 
developed in Horst, Thoai and Tuy ((1987)_and (1989)) (cf. also Horst and Tuy 
(1990)), that the cut (29) enforces z” E D. Since the cut (29) is the most 
straightforward of a family of cuts derived in Horst, Thoai and Tuy (1989) a 
direct proof is immediately available: From the construction of the polytopes Pq, 
it follows that 

zq,(zq’) = s4T,[(zq@) - (zZv)] + L(zqv) =s 0 vp > v . 

This implies in virtue of the Cauchy-Schwarz inequality that 

i(zqq s IIsq,Ij ll(Z”@) - (zqg vp > v . 

But the sequence {(zqv)} is convergent, and hence bounded. Therefore, the 
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corresponding sequence of subgradients is bounded (cf. Rockafellar (1970))) and 
the above inequality yields (letting Y + a, p + ~1, ( p > v)) 

h”((z)CO, i.e. .?=(X,F))ETfIfi. 0 

5. Illustrative Examples 

EXAMPLE 1. 

min 4.x; + 2x: - 4x: 
s.t. x; -2x, -2x,- 1SO 

-l~xx,~l,-l~x,~l 

Setting 

f(x) = 4x; + 2x; , 
g(x) = 4x; 
h(x) = max{h,(x) i = 1,2,. . . ,5} 

where 

h,(x)=x:-2x, -2x,-l 
h,(x) = -x1 - 1 
h3(X) = x, - 1 
h4(X) = -x* - 1 
IQ(X) = x* - 1 

problem (44) becomes 

(44) 

min t - g(x) 
(CP) s.t. f(x) - t GO 

XED 

with D={x~R~:h(x)~0}. 

The origin (0,O) is in D, and we have the initial upper bound &-, = 0. 

(45) 

(46) 

Initialization 

We start with a simplex S,, = {(x,x,) : x1 > -1, x2 5 -1, x1 + x2 =S 2) with vertices 
u1 = (-1, -1) 7Jz = (-1,3), u3 = (3, -1) and with the trivial partition Jll6 = .I& = 
{ T(S,)}, where T, = T(S,) > fi is the prism generated by S,. Since 

Ocmin{f(x):xE D} , 
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we set 

PO={(x,t):-l~x,~l,-l~x,~l,t~O}. 

We obtain cq, = G0 = 0, (x0, to) = (O,O, 0) and /I?,, = /3(T,) = /3(T,, PO, (Y,) = -20. 

Zterution 0 

We obtain czi = a0 = 0, P, = PO II {(x, t): Z,(x, t) 4 0}, where 

I,(x, t) = 16x, -4x, - t - 14. 

Then, using bisection, we subdivide To into two subprisms To,j = T(S,,,) (i = 1,2), 
where So 1 = conv{u’, u”, v4} and So 2 = conv[u’, u3, u4] with u4 = f(u” + u’) = 
(l,l). By’solving the linear programs’ for T,,, and T0,2 we obtain the lower 
bounds p(T,,,) = -4 and PI = p(T,,,) = -17. 

Zteration 1 

We have T, = To,z, and we obtain Pz = P, fl {(x, t) : l,(x, t) < 0}, where 
I,(x, t) = 3.906~~ - 4x, - t - 3.8311. The prism Tl is bisected into T,,i = T(SIVi) 
(i=l,2), where S,,, 
i(u’ + u”) = (1, -1). 

= conv{u’, u4, u’} and S,,, = conv{u3, u4, u”} with u5 = 

With a stopping criterion (Ye - & 6 0.05 the algorithm terminates after 34 itera- 
tions at the approximate optimal solution (x*, t*) = (0.7197,0.0000,1.0731) with 
objective function value -0.9987. 

EXAMPLE 2. We applied the algorithm to the problem 

min(xl + x2 + xg) - (x, + xZ - x3) 
s.t. (x, -x2 - 1.2)*+x2 s4.4 

x1 + x2 + x3 =z 6.5 
x1 3 1.4 
x2 T= 1.6 
x3 2 1.8 

(47) 

which was solved in Thoai (1988) by means of a cutting plane algorithm. The 
transformation of problem (47) in the form (CP) yields 

min t - g(x) 
f(x)- t<O, 

h(x) G 0 
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where 

f(x) = x;’ + x2 + x3 
g(x) = x1 + xf - x3 
h(x) = max{Iq(x), i = 1, . . . ,4} with 

h,(x) = x1 + x2 + x3 - 6.5 
h2(X) = -x* + 1.4 
h3(x) = -x2 + 1.6 

h4(X) = -x3 + 1.8 

(48) 

With a tolerance E = lo-‘, the algorithm terminated after 18 iterations at an 
approximate optimal solution (x*, t*) = (1.400, 1.8128, 1.800, 7.454) (whereas the 
algorithm in Thoai (1988) needed 81 iterations to obtain the same accuracy). 
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